OME – Ein Kraftstoff für den Dieselmotor der Zukunft?

Kraftstoffe für die Mobilität von morgen
3. Tagung der Fuels Joint Research Group, Braunschweig, 21.09.2018

Univ.-Prof. Dr. techn. Christian Beidl
Markus Münz, M. Sc.
Alexander Mokros, M. Sc.
Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe
Technische Universität Darmstadt

CO₂-neutral
nicht fossil
synthetisch

Aktuelle Diskussion

Zwei Themen bestimmen die aktuelle Diskussion um den Verbrennungsmotor:

Luftqualität

Schadstoffemissionen

[tagesschau.de, Auto Zeitung, Focus]

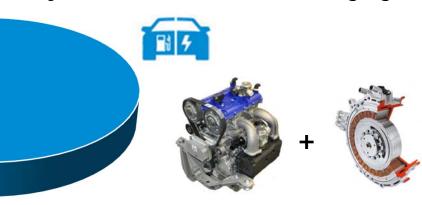
Klimawandel

CO₂-Emission

[Designed by Freepik, Auto Motor Sport]

Batterieelektrische Fahrzeuge

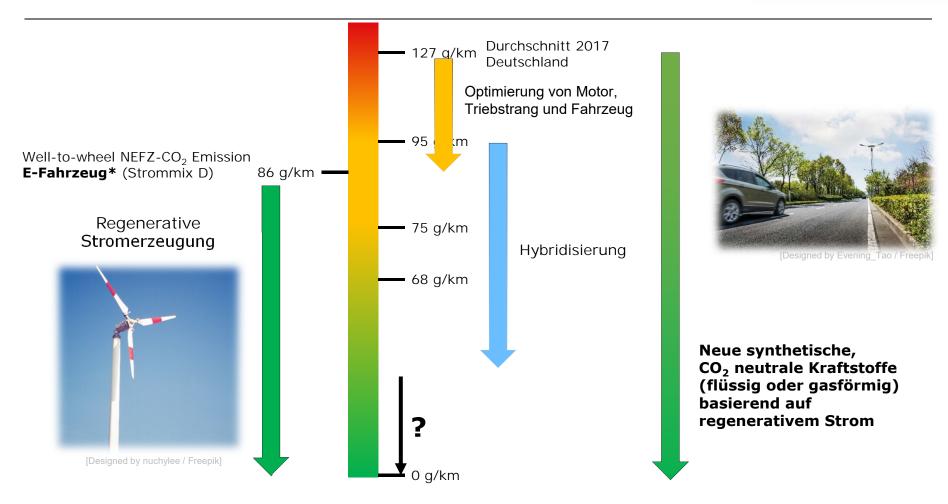
- Batteriekosten werden deutlich sinken
- Reichweiten aber prinzipiell physikalisch begrenzt


Hybridisierte Fahrzeuge

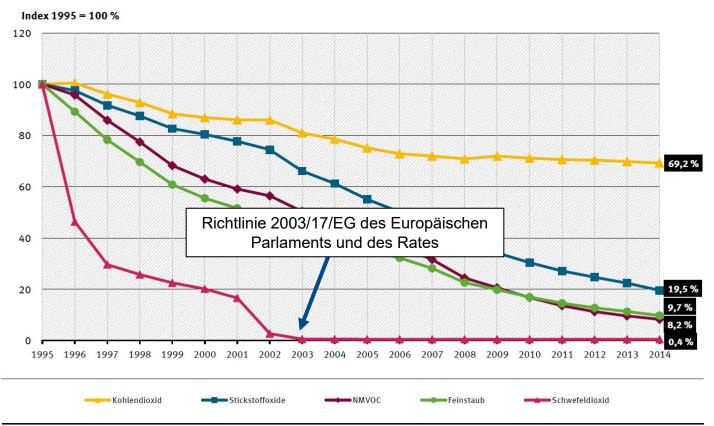
- Werden den Großteil des Fahrzeugmarktes bilden
 - Große Variantenvielfalt, je nach Einsatzgebiet:
 - 48 V Mild-Hybrid bis Hochvolt Full-Hybrid
 - PO/P1 bis P4 Topologie
 - Serielle / parallele Antriebsstrangstruktur
 - Plug-In Hybrid / Non-off-vehicle-charging (NOVC)

Hauptanwendung auf der Kurzstrecke, SubUrban, Pendler

Sonstige


- Gasfahrzeuge
- Brennstoffzelle
- Konventionelle Antriebe

Reduktion von CO₂ Emissionen


^{*}berechnet auf Basis von Herstellerdaten und ${\rm CO_2}$ Emissionsdaten des Umweltbundesamt

Beispiel: Schwefelfreier Kraftstoff seit 2003

Spezifische Emissionen Lkw (direkte Emissionen Lkw / Verkehrsaufwand Lkw)

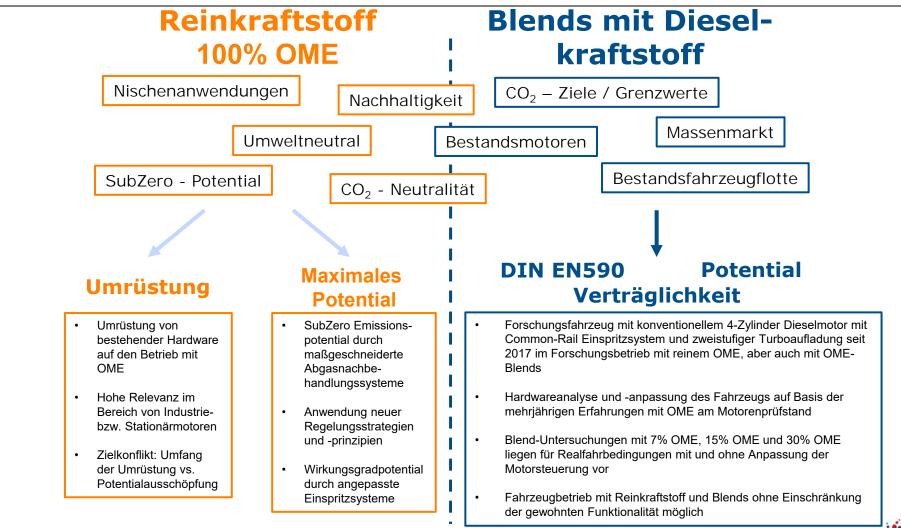
Quelle: Umweltbundesamt, Daten- und Rechenmodell TREMOD - Transport Emission Model, Version 5.63 (01/2016)

Große Anwendungsvielfalt und weltweiter Einsatz

Fokus Dieselmotor

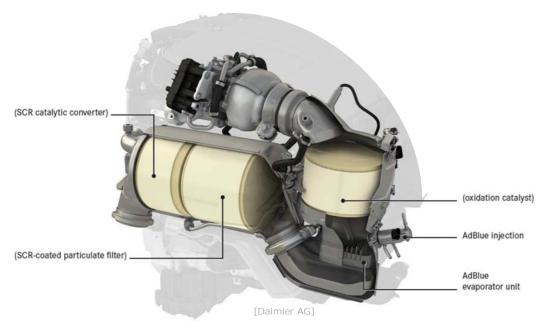
Kraftstoffeigenschaften für OME1 und OME3/4/5 im Vergleich zu konventionellem Diesel

- OME 1 ist problematisch für eine Anwendung im Massenmarkt wegen der niedrigen Siedetemperatur
- OME Gemische mit OME 3 5 haben dieselähnliche Siedetemperaturen aber deutliche höhere Cetanzahlen
- Der Heizwert von OMEs ist niedriger im Vgl. zu Diesel wegen des hohen Sauerstoffgehalts


Parameter	Einheit	Diesel B0 / B7	OME1b (Additiv b)	OME _{3/4/5***}	OME _{3/4/5****}
Heizwert	MJ/kg	42.7 / 42.56	22.5* (23.3**)	19.4	19.44
Dichte bei 15 °C	kg/m³	830 / 835	873	1046	1070
Siedetemperatur	°C	170-370	42	156 / 202	155-242
Cetanzahl (CZ)	-	56.1 / 51.3	50	?	72
Sauerstoffgehalt	M%	- / 0.8	42.1	47.9	48.8
GHS Gefahren- kennzeichnung	-		(b) (!)	<u>(1)</u>	()

^{* [}Zhu, Ren] ** [Vertin, Song, Kocis] *** [ASG Analytik] **** [Pellegrini]

Potentielle Markteinführungszenarien



Technologiestatus: Euro 6d erfolgreich umgesetzt

Mit der Einführung der **Real Driving Emission (RDE)** Gesetzgebung wurde eine tiefgreifende Weiterentwicklung der Abgasnachbehandlungssysteme erforderlich:

- Technologien für die aktuellen Anforderungen an Realfahremissionen sind nun verfügbar und in der Markteinführung
- Damit können die Immissionsgrenzwerte sicher eingehalten werden

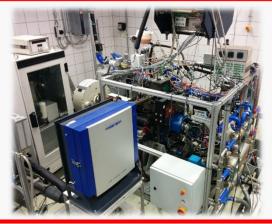
Für zukünftige Fahrzeuge: Zero-Impact Emissions auch bei NO_X!

Fokus OME

- > CO2 Neutralität
- Vereinfachung Motor/Abgasnachbehandlung
- > Subzero-Potenzial

Prüfstände am VKM zur Untersuchung von alternativen Kraftstoffen

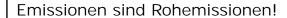
Light-Duty lehrzylindermotoren

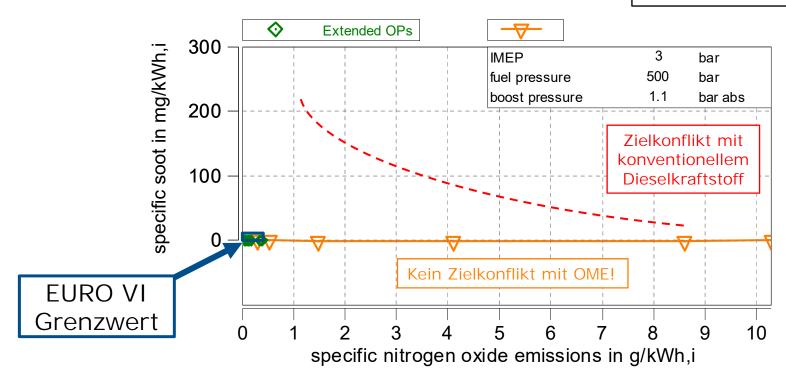

- Verbrennungsanalyse
- Emissionsbewertung
- Bewertung von Abgasnachbehandlungssystemen
- Potential von alternativen Kraftstoffen auf verschiedenen Mehrzylindermotoren untersucht

Heavy-**D**uty Forschungsmotor

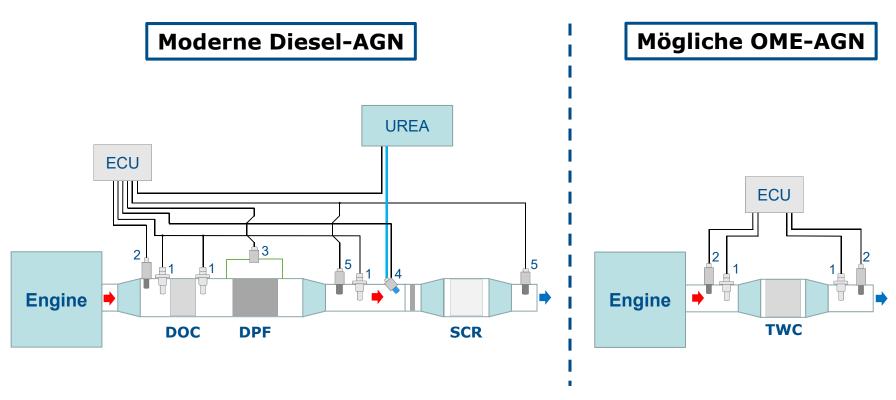
Light-**D**uty Forschungsmotor

AVL Single Cylinder Research Engine				
Zylinderanzahl	1			
Hubraum in dm³	0,533			
Motordrehzahl (max.) in 1/min	4800			
Raildruck CR (max.) in bar	1800			
Aufladung	electric boost			
Motorsteuerung	Schaeffler PROtroniC			



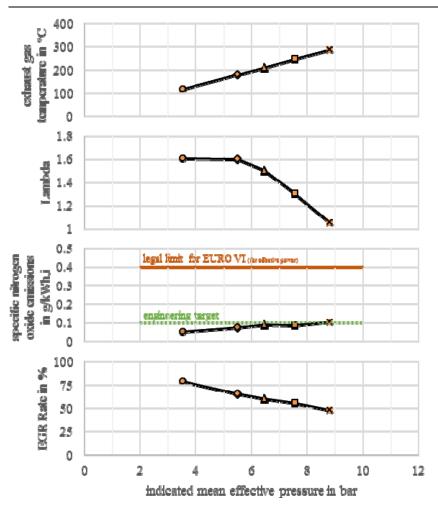

- Grundlagenuntersuchungen (z.B. Hoch-EGR,...)
- Verbrennungsanalyse
- Emissionsbewertung
- Bewertung von alternativen Lastregelungskonzepten

Zielkonflikt zwischen Stickoxid- und Partikelemission ist durch OME eliminiert!



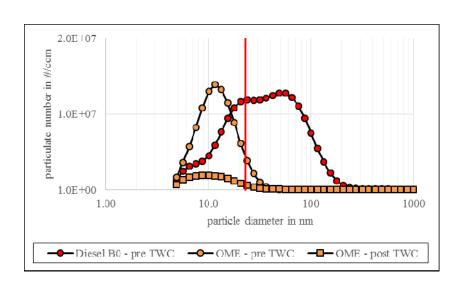
- → EURO VI Grenzwerte für NO_x und PM können in bestimmten Betriebspunkten ohne Abgasnachbehandlung eingehalten werden
- → Signifikante **Vereinfachung** des Abgasnachbehandlungssystems möglich

Mögliche Vereinfachung der Abgasnachbehandlung durch den Einsatz von OME



- 1: Temperatursensor
- 2: O2 Sensor
- 3: Differenzdrucksensor
- 4: UREA Dosiermodul
- 5: NOx Sensor

Ergebnisse #1: Überblick



- Lastschnitt bei konstanter Motordrehzahl
 mit n_{Motor} = 1500 1/min
- ISNOx Entwicklungsziel ist bei
 0.1 g/kWh,i für Rohemissionen gesetzt
- Lambda und AGR-Rate werden durch das ISNOx-Ziel als Teil der Lastregelungsstrategie definiert
- ISNOx Entwicklungsziel wird ohne Abgasnachbehandlungssystem erreicht!
 - AGR-Raten bis zu 80%
 - Insgesamt mageres Gemisch in meisten Punkten
 - Erreichen des ISNOx-Ziels bei h\u00f6herer Last mittels Dreiwegekatalysator (Lambda = 1)

Ergebnisse #2: Vergleich von PN vor und nach TWC

- Vergleich der PN-Konzentration für Diesel B0 und OME (vor TWC)
 - Durchschnittlicher Partikeldurchmesser ist kleiner mit OME
 - Fast keine PN für OME oberhalb von 23 nm
- Signifikante Oxidation von feinen Partikeln über den TWC!
 - PN-Konzentration für OME nach TWC in der Größenordnung von heutigen
 Umgebungskonzentrationen in Ballungsgebieten für alle Partikeldurchmesser

Überblick Forschungsfahrzeug

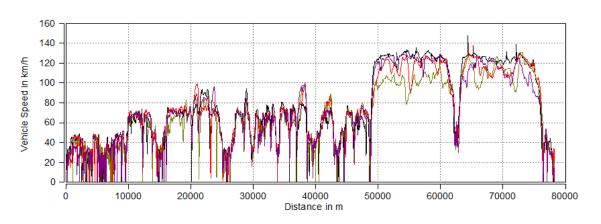
Forschungsfahrzeug (SUV)					
Zylinderzahl	4				
Hubraum in I	1.969				
Antriebstrang	FWD				
Getriebe	MT				
Max. Raildruck in bar	2500				
Aufladung	Zweistufig Turbocharging				
ECU-AddOn	HEICO SPORTIV e.Motion				

Messausrüstung

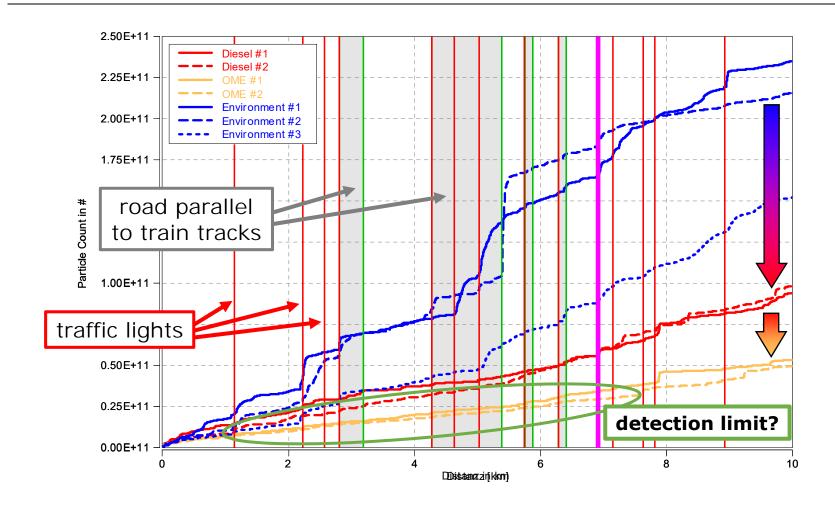
- Indiziersystem
 - Optische Auflösung: 1 °CA
 - Messung des Zylinderdrucks und des Injektorstroms in Zylinder 2
- OBD-Aufzeichnung
- Verschiedene analoge Messgrößen sowie Temperaturen

Abgasmesssysteme

- PEMS (Portable emissions measuring system)
 - Messung von CO, CO₂, NO, NO₂ und PN unter Realfahrbedigungen
- Zusätzlicher O₂ sensor
- Zusätzlicher NO_x sensor

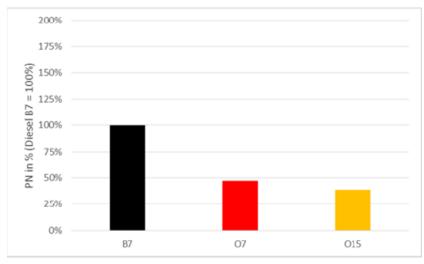


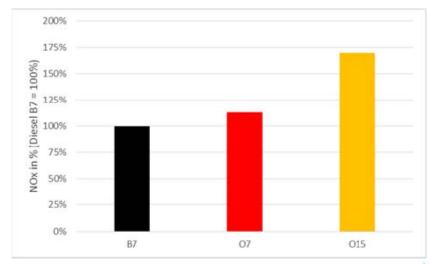
Überblick über RDE-Fahrten auf aggressiver Route


- Verschiedene Fahrten mit Diesel,
 OME und Blends durchgeführt
- Partikelemissionen für alle Fahrten deutlich unter Grenzwert (CF PN ~ 0.01)
- 60 % Reduktion der PN durch OME im Vergleich zu Diesel in diesen Messungen (Gesamtstrecke)

Vergleich der Partikelemissionen – RDE urban

(Darmstadt Urban Part)





Aktuelle Untersuchungen mit Blends

- Untersuchungen mit Forschungsfahrzeug unter Realfahrtbedigungen (RDE)
- Mehrere Fahrten je Blend durchgeführt
- Hier dargestellt: Messfahrten mit Kaltstart ohne Anpassung der Motorsteuerung
- Signifikante Reduktion der Partikelanzahl mit steigendem OME-Gehalt
- Anstieg der NO_x-Emissionen kann durch Anpassung der Motorapplikation kompensiert werden

Starker Fokus auf Energieträger

Zukünftige Marktentwicklung:

"Kein Wettbewerb der Motoren, sondern ein Wettbewerb der Energieträger,

n

Energieträger ist unverzichtbarer Bestandteil von CO2 Strategien, wenn heutiger Level von Mobilität und Transport erhalten bleiben soll

Kurzfristiger Hebel: Gas/Biogas/e-Gas

Langfristig und nachhaltig:

CO2 neutrale Flüssigkraftstoffe (im Fokus Dieselersatzkrafstoff OME)

→ Anpassung der Motorentechnologie, intelligente Flexfueltechnologien

Zusammenfassung

- Synthetische Kraftstoffe auf regenerativer Basis können einen signifikanten Beitrag zur Reduktion von CO₂-Emissionen leisten
- Kraftstoffe mit hohem Sauerstoffgehalt und ohne direkten Kohlenstoffbindungen können rußfrei verbrennen
- Unterschiedliche Entwicklungsrichtungen von OME sind abhängig von mögliche Markteinführungsszenarien, der zu erwartenden Produktionskapazität sowie den notwendigen Änderungen an Motoren und Fahrzeugen
- Positive Verbrennungseigenschaften können zu einer Vereinfachung des Abgasnachbehandlungssystems führen
- Subzero-Potenzial: Partikelanzahlkonzentration im Bereich heutiger Umgebungskonzentrationen in Ballungsgebieten möglich
- Betrieb des Versuchsfahrzeuges seit 1,5 Jahren ohne Auffälligkeiten
- Nächste Schritte:
 Optimierung Brennverfahren/Emissionierung/Control, Materialverträglichkeiten

Vielen Dank für Ihre Aufmerksamkeit!

Der zukünftige Mix von Antriebssystemen ist keine Frage der Motoren, sondern des Energiesystems!

Institut für Verbrennungskraftmaschinen und Fahrzeugantriebe

Otto-Berndt-Straße 2 64287 Darmstadt

www.new-energy-vehicles.com www.verbrennungskraftmaschinen.de www.real-driving-emissions.com www.vkm-ome.de www.automotive-clean-air.com

